|
|
您现在的位置: >> 师资队伍 >> 教师介绍 |
教师介绍 |
|
|
基本信息
职务:党支部书记、系副主任
职称:副教授
电话:025-85427620
地址:9e508
邮箱:hbinjm@qq.com |
个人简介: |
刘鸿斌,博士,副教授,高级工程师,硕士生导师 2015/4 - 至今,南京林业大学,轻工与食品学院,副教授 2019/4 - 2022/3,华泰集团,高级工程师,企业博士后 2017/12 - 2018/12,美国南加州大学(university of southern california),化工系,国家公派访问学者 2013/10 - 2014/12,瑞典乌普萨拉大学(uppsala university),信息与技术学院,博士后 2009/9 - 2013/8,韩国庆熙大学(kyung hee university),环境科学与工程,博士
|
主要研究方向: |
化工、轻工、环境等复杂工业过程的建模、优化及控制
|
研究课题情况: |
中国博士后科学基金特别资助项目 江苏省高等学校基础科学(自然科学)研究重大项目 山东省自然科学基金面上项目 山东省企业博士(后)集聚计划
山东省博士后创新项目 南京林业大学标志性成果培育建设项目
南京林业大学青年人才项目
南京林业大学高层次人才科研启动基金资助项目
|
代表性成果: |
发表学术论文100多篇;授权发明专利、软件著作权20余件;参编教材1部。近年来的部分成果列举如下:sci期刊论文 zhang, k.; yang, j.; sha, j.; liu, h*. dynamic slow feature analysis and random forest for subway indoor air quality modeling. building and environment, 2022, 213: 108876. yang, j.; wang, j.; sha, j.; dai, h.; liu, h*. quality-related monitoring of distributed process systems using dynamic concurrent partial least squares. computers & industrial engineering, 2022, 164: 107893. yang, d.; wang, j.; yan, x.; liu, h*. subway air quality modeling using improved deep learning framework. process safety and environmental protection, 2022, 163: 487-497. wang, j.; lu, y.; xin, c.; yoo, c.; liu, h*. kernel pls with adaboost ensemble learning for particulate matters forecasting in subway environment. measurement, 2022, 204: 111974. zhang, h.; yang, c.; shi, x.; liu, h*. effluent quality prediction in papermaking wastewater treatment processes using dynamic bayesian networks. journal of cleaner production, 2021, 282: 125396. yang, c.; zhang, y.; huang, m.; liu, h*. adaptive dynamic prediction of effluent quality in wastewater treatment processes using partial least squares embedded with relevance vector machine. journal of cleaner production, 2021, 314: 128076. ma, x.; zhang, y.; zhang, f.; liu, h*. monitoring of papermaking wastewater treatment processes using t-distributed stochastic neighbor embedding. journal of environmental chemical engineering, 2021, 9(6): 106559. liu, h.*; yang, j.; zhang, y.; yang, c. monitoring of wastewater treatment processes using dynamic concurrent kernel partial least squares. process safety and environmental protection, 2021, 147: 274-282. liu, h.*; yang, c.; huang, m.; yoo, c. soft sensor modeling of industrial process data using kernel latent variables-based relevance vector machine. applied soft computing, 2020, 90: 106149. liu, h.*; zhang, y.; zhang, h. prediction of effluent quality in papermaking wastewater treatment processes using dynamic kernel-based extreme learning machine. process biochemistry, 2020, 97: 72-79. liu, h.*; yang, c.; huang, m.; yoo, c. multivariate statistical monitoring of subway indoor air quality using dynamic concurrent partial least squares. environmental science and pollution research, 2020, 27(4): 4159-4169. liu, h.*; yang, c.; carlsson, b.; qin, s. j.; yoo, c. dynamic nonlinear partial least squares modeling using gaussian process regression. industrial & engineering chemistry research, 2019, 58(36): 16676-16686. liu, h.*; yang, c.; huang, m.; wang, d.; yoo, c. modeling of subway indoor air quality using gaussian process regression. journal of hazardous materials, 2018, 359: 266-273. 宋留; 杨冲; 张辉; 刘鸿斌*. 造纸废水处理过程的高斯过程回归软测量建模. 中国环境科学, 2018, 38(7): 2564-2571.
沈文浩,李军,刘鸿斌,等. 造纸过程控制与维护管理,北京:中国轻工业出版社,2017.
|
|
|
|
|
|